Feature import vector machine: A general classifier with flexible feature selection
نویسندگان
چکیده
منابع مشابه
Feature import vector machine: A general classifier with flexible feature selection
The support vector machine (SVM) and other reproducing kernel Hilbert space (RKHS) based classifier systems are drawing much attention recently due to its robustness and generalization capability. General theme here is to construct classifiers based on the training data in a high dimensional space by using all available dimensions. The SVM achieves huge data compression by selecting only few ob...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملNonlinear Feature Selection by Relevance Feature Vector Machine
Support vector machine (SVM) has received much attention in feature selection recently because of its ability to incorporate kernels to discover nonlinear dependencies between features. However it is known that the number of support vectors required in SVM typically grows linearly with the size of the training data set. Such a limitation of SVM becomes more critical when we need to select a sma...
متن کاملProbabilistic Feature Selection and Classification Vector Machine
Sparse Bayesian learning is one of the state-ofthe-art machine learning algorithms, which is able to make stable and reliable probabilistic predictions. However, some of these algorithms, e.g. probabilistic classification vector machine (PCVM) and relevant vector machine (RVM), are not capable of eliminating irrelevant and redundant features which could lead to performance degradation. To tackl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Analysis and Data Mining: The ASA Data Science Journal
سال: 2015
ISSN: 1932-1864,1932-1872
DOI: 10.1002/sam.11259